ALGORITHMIC NUMBER THEORY
MA526

Course Description

This course presents number theory from an historical point of view and emphasizes significant discoveries from ancient to modern times, as well as presenting unsolved problems and areas of current interest. Topics include: prime numbers and related theorems; Euclidean algorithm and quadratic reciprocity; Pythagorean numbers and continued fractions.

Goals of the Course

1. To develop the mathematical skills to solve number theory problems and to develop the mathematical skills of divisions, congruences, and number functions.
2. To introduce the art of constructing proofs.
3. To learn the history of number theory and its solved and unsolved problems.
4. To investigate applications of number theory and the use of computers in number theory.

Instructional Procedures

a. Lecture/Discussion
b. Homework problems from text

Course Content

A. Divisibility
 1. Greatest Common Factor and Least Common Multiple
 2. Division Algorithm
 3. Euclidean Algorithm
 4. Linear Combinations
 5. Congruences
 6. Mathematical Induction
B. Prime Numbers
 1. Prime Factorization
 2. Factorization in other systems
 3. Fundamental Theorem of Arithmetic
4. Prime Power Factorization
5. Set of Primes is Infinite
6. A Formula for d(n)
C. Numerical Functions
 1. Sum of the Divisors
 2. Multiplicative Functions
 3. Perfect Numbers
 4. Mersenne and Fermat Number
 5. Euler Phi Functions
 6. Mobius Inversion Formula
D. Algebra of Congruences Classes
 1. Solving Linear Congruences
 2. Chinese Remainder Theorem
 3. More than Two Congruences
 4. Theorems of Fermat and Euler
 5. Public Key Cryptography
E. Congruences of Higher Degree
 1. Polynomial Congruences
 2. Congruences with Prime Power Moduli
 3. Quadratic Residues
 4. Quadratic Reciprocity

Evaluation Measures
 a. Hourly Exams
 b. Homework
 c. Final Exam
 d. Project

Bibliography
A. Required Texts
 Vanden Eynden, Charles, Elementary Number Theory, Random
 House, N.Y. 1987

B. Supporting Bibliography
 Grosswald, Emil, Topics from the Theory of Numbers, Random
 House, 1986
 Niven, Ivan and Zuckerman, Herbert, An Introduction to the Theory
 of Numbers, 4th Ed, John Wiley & Sons, 1980